
Advanced C++ and Modern Design
Originator: Dr. Daniel J. Duffy, Datasim Education BV

Amsterdam

Objectives
The goal of this hands-on course is to introduce modern C++11 to C++20 and apply it to the design

and implementation of applications in a number of domains. We describe the new syntax and

libraries in detail and we show how to use these new features with the well-established Gamma

and parallel design patterns. We then apply this knowledge to designing applications in

computational finance, mathematics, engineering and computer graphics. In this way we hope

show the power and usefulness of C++ and as industry standard for software developers.

For whom is this Course and what is Prerequisite Knowledge?
We have developed this course for a range of software developers who use (or have used)

C++ to develop applications, specifically for those developers who are in any of the following

cExegories:

• Have intermediate or advanced C++98 knowledge and who wish to learn C++.

• Have completed the Baruch/Quantnet C++ Programming for Financial Engineering
course.

• Experienced C++ developers who wish to learn and apply design techniques in a multiparadigm

programming environment.

• In general, this course is for C++ developers who wish to experience the full power of

C++ for application development.

Course Structure and Process
This course uses a structured approach to learning C++ and using it in applications. The approach

taken integrates advanced multiparadigm language features, software engineering and design

principles to implement real-world applications in a number of technical domains. The modules are

self- contained and logically related to previous modules. In this way we can progress from topic to

topic in an orderly fashion. Each module consists of between seven and ten sections. Each section

has an average length of one hour and it discusses a given topic in detail. In order to reinforce and

consolidate the learning experience we have produced the following products:

• A set of quizzes to test how well you have learned the topic.

• Sample code to show how a particular technique works.

• Hands-on programming exercises that test how to apply the techniques.

In this way you can assess your progress before moving on to the next module.

Contents Overview

The main goal of this course is to apply modern C++ language features and to integrate them with

design and system development methods to build software systems. In order to achieve this goal

we have created six modules, each one dealing with one aspect of C++. The first three modules

constitute a full treatment of C++ and is state-of-art. The focus in these modules is on learning

what C++ offers in terms of new functionality and libraries. The last three modules integrate and

apply C++ to Boost C++ libraries, patterns and system engineering.

The contents (audios, quizzes and exercises) are elaborated in an incremental fashion (both

inter- module and intra-module) in order to make the learning process as seamless as

possible.

1. C++11 and beyond essentials

In this module (7 sections) we introduce some of the most important and far-reaching

functionality that C++11 offers. In particular, we discuss the multi-paradigm approach to

modelling functions. We also introduce functionality that improves the robustness and

efficiency of C++ code.

Lambda functions’ essential functionality Comparing lambda functions with function

0bjects

Improving classes in C++11 (avoiding generation of special functions, move semantics,

explicit constructors, no except) Variadic’ fundamentals and polymorphic

behavior Universal function wrappers and C++11 Bind

Function wrappers with Inheritance and Composition Tuples A-Z

Sealed classes

Other class improvements (alias template, explicit override)

C++17/20 Language Features I

Improving code quality (e.g. readability, reduce code bloat, reliability)
Auto deduction of correct variable by compiler (no human intervention)
Structured bindings to fixed arrays, tuples and member data
Class template argument deduction (CTAD) in initializers

C++17/20: Some Data Types

std::variant

Type-safe visitation on variants
Applications

2. Advanced C++ Features

In this module (8 sections) we introduce advanced syntax and functionality in C++11 and C++14.

The main focus is on functionality that promotes the reliability and robustness of C++ code, for

example dealing with numeric overflow/underflow, round-off error and safe pointers; we also

discuss advanced template programming such as variadic types, type traits and platform-

independent and platform-dependent error codes.

Introduction to type traits and Template Metaprogramming (TMP) Advanced

type traits (for example, creating type-independent code)

Advanced lambda programming (for example, init captures and functional programming

in C++)

Smart pointers in Boost and C++11

IEEE 754 and C++ Floating Point Classification

Platform-dependent and platform-independent error codes and error conditions

STL Bitset, Boost dynamic Bitset and mini-applications

STL Function Objects and Lambdas

Veridic Template Programming

Multiparadigm Programming in C++

C++17/20 Language Features II:

Auto deduction rules for braced initialisation lists
The seven ways to initialise variables
std::byte

Three-way (spaceship) operator
Template parameter lists for lambda functions

C++17/20 Language Features III

Review of C++ parameter packs
Aggregation initialisation
Fold expressions for recursive data structures; applications
Concepts for the impatient

C++17/20 Language Features IV

std::string_view

String literals as template parameters
std::optional

std::span

3. C++ Libraries

In this module we discuss how C++ supports multi-threading, concurrency and parallel

programming. Prior to C++11 there was no direct support for multithreading in the language and it

was necessary to use either Boost Thread or some proprietary library. We discuss the details of

thread programming as well as tasks, futures and promises.

Essentials of Boost and C++11 threading

Advanced C++ Concurrency

C++ Tasks and tasking applications

Extensions for Parallel STL
ISO/IEC TS 19570:2015 standard
Making STL algorithms work in parallel mode
Execution policy; kinds of parallelism.

4. STL, Data Structures, and Random Numbers

In this module we discuss introduce new data structures in C++11 and advanced treatment of STL

algorithms. Furthermore, we discuss how to generate random numbers natively in C++11.

New data structures and data types

STL algorithms in a multi-paradigm programming environment

Random numbers and statistical distributions

5. Boost C++ Libraries
In this module (9 sections) we give a thorough overview of the Boost C++ libraries in order to

acquaint the student with their potential and functionality. A number of the Boost libraries are also

in C++11 but many have not been ported and it is for this reason that it is worth investigating what

Boost has to offer. Furthermore, the libraries are well-documented in the main and the online

documentation is useful. We do recommend the books “Introduction to the Boost C++ Libraries”

(Volumes I and II) with full source code by Robert Demming and Daniel J. Duffy (contact

info@datasim.nl for information).

Boost Libraries Overview String Algorithm Library Regular expressions and Regex Hash

and Unordered

Bitmap Heap

Matrix Libraries (Boost bullas) Signals and Slots (Boost signals2)

6. System and Design Patterns

In this module (8 sections) we discuss the popular design and system patterns that are based on

the object-orient model. We concentrate on approximately 20% of the patterns that account for

80% of the effectiveness in software development. We also show how to create next-generation

patterns using the multiparadigm programming models that C++11 supports. The topics from

Module 5 can be seen as the building blocks as input to Module 6.

Class and Component diagrams in UML Whole-Part Pattern

Object-Oriented Metrics Creational patterns Structural patterns Behavioral Patterns

Next Generation Design Patterns Examples and applications

7. Modern Design

In this module (6 sections) we present a defined process (based on a combination of Structured

Analysis, System patterns and C++11) to architecting, design and implementation of complex

software systems. This approach allows us to create software systems as a sequence of working

prototypes in C++.

Locating and bounding the Software System Decomposition

Presentation Abstraction Control model Policy-Based Design (PBD) in C++ Example and

applications

Principles of Parallel Programming and Libraries
Option: Design using C++20 (Concepts, Modules, parallel).

C++ Concepts Motivation and Overview

Introduction to C++20 Concepts library
Syntactical and semantical elements
Concepts as protocols and modelling constructs
Provides-requires interfaces
“Rules of engagement” between client and server

Concepts: Nuts and Bolts

Keywords: concept and requires
Core language concepts
Concepts and type traits
Conjunction, disjunction and composite concepts

mailto:info@datasim.nl

Concepts in Applications
Concepts as central element in a new design philosophy
System decomposition into components
Designing components using concepts (“Concepts-based design (CBD)”)
Moving from Policy-based design to CBD

Modules: Motivation

What is a module? The “componentisation” of C++
Logical division of C++ code
Keywords export and import
Migrating legacy code to modules

