
1.6 - The Preprocessor
All exercises in this Level must be coded exclusively in C syntax (no
<iostream>, cout, cin, classes, etc.)

Exercise 1

Write a C-program that contains two print macro calls. The first prints the variable a, the
second prints the variables a and b. Printing happens by the use of the PRINT1 and
PRINT2 macros that accept arguments. These macros must be defined in an include-file.
The variables a and b gets their value in the function main().

Name the program “Macro.c” and the include-file “Defs.h”. Don’t forget to implement
the mechanism to avoid multiple inclusion of the header file.

Exercise 2

Create the two macros MAX2(x,y) and MAX3(x,y,z). These macros must return the
maximum value of the given arguments. Let the macro MAX3 make use of the macro
MAX2. Add these macros to the file “Defs.h”.

1.7 - Pointers and Arrays
Exercise 1

Try to create a function Swap(). This function must exchange the value of two variables.
For example: if i=123 and j=456, then i=456 and j=123 after the Swap() function has
been called. The variables i and j are declared, initialised and printed in the
function main(). This problem can be solved by using pointers as arguments for
the Swap()function.

Exercise 2

The following program reads a string with a 30 character maximum. Implement
the Length() function. The function Length() must determine the length of the string.
Give Length() the address of the array as argument.
Note: your Length() function should be similar to the built-in strlen() function so your
job is to mimic that function without using it.

EOF is used in the function main(). This means End-of-File and is discussed later on in
this document.
In DOS, EOF can be entered by the key combination Ctrl-z (often written as ^Z). With
^Z (Say: control Z) is meant pressing the control-key and the z-key simultaneously.

/* Calculate the length of a string */
#include <stdio.h>
#define MAXLINE 30
// String lenght declaration
int Length(char str[]);

int main()
{
 char string[MAXLINE+1]; // Line of maxium 30 chars + \0
 int c; // The input character
 int i=0; // The counter

 // Print intro text
 printf("Type up to %d chars. Exit with ^Z\n", MAXLINE);

 // Get the characters
 while ((c=getchar())!=EOF && i<MAXLINE)
 {
 // Append entered character to string
 string[i++]=(char)c;
 }
 string[i]='\0'; // String must be closed with \0
 printf("String length is %d\n", Length(string));
 return 0;
}
/* Implement the Length() function here */

Exercise 3

/* Predict what will be printed on the screen */

#include <stdio.h>

#define PRD(a) printf("%d", (a)) // Print decimal
#define NL printf("\n"); // Print new line

// Create and initialse array
int a[]={0, 1, 2, 3, 4};

int main()
{
 int i;
 int* p;

 for (i=0; i<=4; i++) PRD(a[i]); // 1
 NL;

 for (p=&a[0]; p<=&a[4]; p++) PRD(*p); // 2
 NL;
 NL;

 for (p=&a[0], i=0; i<=4; i++) PRD(p[i]); // 3
 NL;

 for (p=a, i=0; p+i<=a+4; p++, i++) PRD(*(p+i)); // 4
 NL;
 NL;

 for (p=a+4; p>=a; p--) PRD(*p); // 5
 NL;

 for (p=a+4, i=0; i<=4; i++) PRD(p[-i]); // 6
 NL;

 for (p=a+4; p>=a; p--) PRD(a[p-a]); // 7
 NL;

 return 0;
}

Exercise 4

Create a C-program that has a function DayName()which can print the day of a given
day-number. For example:

1 gives: Day 1 is a Sunday
7 gives: Day 7 is a Saturday.

The day-name (1-7) should be written "hard-coded” into the program using an array of
strings.

1.8 - Structures

Exercise 1

Write a C-program that prints the contents of a struct called Article. An Article has the
following characteristics:
• Article number
• Quantity
• Description (20 characters)

The test program must create an Article of which the contents are assigned at
initialization level.

Printing the Article is done with a Print() function. This function gets the address of the
structure as a parameter.

Tip: Suppose that p is the pointer to the structure. It will allow the fields to be printed
by (*p).fieldname or p->fieldname.

1.9 - Input and Output

Exercise 1

Create a C-program that reads the characters from the keyboard and shows them on
screen (the inputted characters should only be displayed when the user hits 'enter', line
by line).

When ^A is entered, the program must end properly. Then the following message will
appear: “CTRL + A is a correct ending.”

Tip: getchar() reads and putchar() writes the type int. The value of ^A is 1.

Exercise 2

Alter the last program of exercise 1 in such a way that the output doesn’t go to the screen
but is written to a file. The file to write to must be specified by the user.

	1.6 - The Preprocessor
	Exercise 1
	Exercise 2

	1.7 - Pointers and Arrays
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	1.8 - Structures
	Exercise 1

	1.9 - Input and Output
	Exercise 1
	Exercise 2

