
Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

1

Data Aggregates

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 2

Data Aggregates

This chapter shows some uses of types available in C which use the earlier mentioned fundamental
data types. They have a higher level of definition.

2

l Structures

l Unions

l Typedef

l Bitfields

Overview

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

3

Structs
A struct is an example of an aggregate. It consists of a number of items called members. A structure
is a type definition of something that consists of more than one value. Creating variables of a
structure creates variables consisting of other variables like a record in a database. In a database a
record is an element of a database table and each record consists of several data elements. For
example a record in an address database will typically consist of a name, address, city, phone
number. Each record in the database will consists of these aggregate parts.

The struct is declared using the keyword struct:

struct Record
{
 char name[30]; /* Name of max 29 characters */
 char city[20]; /* City of max 19 characters */
 char street[30]; /* Street of max 29 characters */
 int number; /* Street number */
 char phone[11]; /* Phone number max 10 characters */
};

The struct declaration is nothing more than a type definition. The members defined in the structure
become concrete members when we create a variable of this struct type.

3

Intro to Structures

l Aggregate of other types, much like a database record

l Structure creates new type
struct <name> { [members] };

l Example a new type representing a point
struct point

{

int x;

int y;

};

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 4

Using the Structure
If we want to use the structure we need to create variables of the struct type we just created. The
variables are created like normal variables of a fundamental type using the type and a variable
name, but we have to use the keyword struct.

void main()
{
 int int_var; /* Normal int variable */
 struct point pt; /* Variable of the struct type point */
 struct point pt2; /* Another variable of type point */
}

After creating the point we can access its members by using a period (.) and the name of the
member.

void main()
{
 int int_var; /* Normal int variable */
 struct point pt; /* Variable of the struct type point */
 struct point pt2; /* Another variable of type point */

 /* Initialise the members of the two points */

 pt.x = 10.0;
 pt.y = 20.0;
 pt2.x = 30.0;
 pt2.y = 40.0;

 /* Assign two structs */
 pt = pt2;
}

It is possible to assign two variables of the same structure. When we assign them all members of
the struct variable will be copied.

4

Using Structure

l Use structure as a new built-in type
struct point pt;
struct point pt2 = {10, 11};

l Access members of struct using the dot (.)
pt.x = 10
pt.y = 20

l Can assign (copy) struct variables
pt = pt2;

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

5

/* Program to show the use of structs.
 (C) Datasim BV 1995 */

#include <stdio.h>

struct point
{

int x; // The x-co-ordinate
int y; // The y-co-ordinate

};

void main()
{

 struct point my_point = { 1, -2 };

 printf("The size of a point struct is: %d\n", sizeof(struct point));
 printf("x: %d, y: %d\n", my_point.x, my_point.y);
}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 6

Arrays of Structs
In the previous modules we created arrays of numbers and arrays of characters (strings). It is also
possible to create arrays of structures. If we create such an array then each element in the array is a
structure with its own fields. Declaring such an array is rather straight forward:

void main()
{
 struct point arr[4];
}

The variable arr is an array of four point structures. If we want to initialise their values we first
have to index in the array to get the structure and then use the period to access the elements of the
structure.

void main()
{
 struct point arr[4];

 arr[0].x = 10; /* The first structure field x */
 arr[0].y = 11; /* The first structure field y */
 arr[1].x = 12; /* The second structure field x */
 arr[1].y = 13; /* The second structure field y */
}

Another possibility is to initialise the array upon creation by specifying the value of each element in
the array between {} brackets. In this case each element is a structure which can also be initialised
by {} brackets.

void main()
{
 struct point arr[2] = {{10, 11}, {11, 24}};
}

5

l Create an array of a structure

l Each element is a variable of that structure

l Can initialise the elements upon declaring using {}
struct point arr[2] = {{10, 11}, {11, 24}};

Arrays of Structures

10

11

11

24

First
struct point

Second
struct point

struct point arr[2]= {{10, 11}, {11, 24}};

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

7

The following example shows how to create an array of objects with each object being itself a
struct.

/* Program to show the use of structs (arrays of structs).
 (C) Datasim BV 1995 */

#include <stdio.h>

struct point
{
 int x; // The x-co-ordinate
 int y; // The y-co-ordinate
};

void main()
{
 struct point pl[4] = { {0, 0}, {1, 0}, {1, 1}, {0, 1}};
 int cnt;

 // Now print the points of the polyline
 for (cnt = 0; cnt < 4; cnt++)
 {
 printf("Point number %d: (%d, %d)\n", (cnt+1), pl[cnt].x, pl[cnt].y);
 }
}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 8

Structures and Pointers

Normally we access the elements of a structure using a period. This period gives us access to a
member of a struct variable. However using pointers to structures is a bit more complicated.

struct point pt;
struct point* pp;
pp = &pt;

The pointer pp points to the variable pt which is a point struct. Accessing its members through the
pointer is a bit more difficult. First we need to get the structure the pointer points to by
dereferencing:

pp /* pointer to structure */
(*pp) /* structure that pp points to */

Next we can access the members using the period:

(*pp).x = 10.0;
(*pp).y = 20.0;

Another way of accessing the fields when using a pointer to a structure is with the symbol ‘->‘
(minus greater-than):

pp->x = 10.0;
pp->y = 20.0;

6

Structures and Pointers

l Access members of structures using dot (.)
struct point pt;

pt.x = 10.0;

lWhen using pointers to structures use a -> to access struct members
struct point* pp = &pt;

pt->x=20.0; /* Use -> to access members */

(*pt).y=30.0; /* Use dereference and . */

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

9

Passing Structures
Normally when you pass a value to a function the value you pass is copied to the argument of the
function. The function uses a copy of the original value. This is called “call by value”.

void print(int a)
{
 printf("%d\n", a);
}

void main()
{
 int value = 10;
 print(value); /* value is copied to a */
}

When we pass a structure to a function, a copy is created as well. Copying a structure results in
copying all the fields of that structure. Bigger structures will result in a big overhead in copying. To
solve this, the best way is to always use a pointer when passing structures to functions:

void print(struct point* pt)
{
 printf("(%d, %d)\n", pt->x, pt->y);
}

void main()
{
 struct point point_1;

 point_1.x = 10.0;
 point_1.y = 20.0;
 print(&point_1);
}

7

Passing Structures

lWhen passing structures to functions all members are copied

l Use pointers to structures for passing structures
void print(struct point* pt);

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 10

Unions

The union has a resemblance to a struct. The declaration of a union is almost the same as that of a
structure. Only instead of the keyword struct we use the keyword union. The syntax:

 union <name> {<Fields>};

The operations are the same for unions as that for structs. The difference between the struct and the
union is that the struct is an AND relation and the union is an OR relation. When we create a
variable of a predefined structure then that variable will have all the fields that are declared in the
structure. If we create a variable of a union type, that variable will contain a value which is one of
the fields declared in the union.

union u_tag
{
 int ival;
 float fval;
};

void main()
{
 union u_tag var;
}

The variable fields of the variable var can be accessed using the period and the field name. If we
assign a value to such a field the variable var will contain the value assigned to that field. The other
fields should not be used because all the fields occupy the same memory. The variable var should
contain or an int value assigned via the field ival or a float value assigned via the field fval:

void main()
{
 union u_tag var;
 var.ival = 10; /* Variable var contains an int value */
 var.fval = 20.0; /* Variable var contains a float value */
}

8

Unions

l Or relation: variables contain value of one of the union field types

l Same syntax as struct only type union
union u_tag

{

int ival;

float fval;

};

l Size equal to size of largest member

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

11

If we assign for example a value to the field ival, we can access the float value fval but its value
will be unpredictable because it is filled using the type int. Using variable of type union can be very
cumbersome. If we want to access its value we have to know what value was placed in that union.
That is why mostly unions are part of a structure with a field specifying what kind of value is stored
in the union.

struct value
{
 union u_tag var;
 int type; /* 0 = int, 1 = float */
};

void print(struct value* val);

void main()
{
 struct value variable;
 variable.type = 0;
 variable.var.ival = 10;
 print(&variable);

 variable.type = 1;
 variable.var.fval = 10.10;
 print(&variable);
}

void print(struct value* val)
{
 if (val->type == 0)
 {
 printf("An integer value : %d\n", val->var.ival);
 }
 else
 {
 printf("A float value : %f\n", val->var.fval);
 }
}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Data Aggregates 12

Typdef
Using typedef it is possible to assign another name to an already existing type. Instead of the
already existing type name, the typedef can be used as well.

typedef long int INT32;

void main()
{
 INT32 number;
 INT32 number2 = 10L;
}

The typedef is often used for portability reasons. Suppose all number used in a source file should be
a 32 bit value. On most platforms the int type 32 bit. But on other platforms the int type might be
16 bit. If we port our code to these platforms, we have to change all the references to the int type
into a long int. By using the typedef we only have to change the typedef and all reference to the
typedef are automatically changed.

9

Typedef

l Assign another name to existing type

l Use typedef for substitution
typedef long int INT32;

l Do not forget the semi-colon

Data Aggregates

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

13

Bit Fields
Bit fields are integral types. They are highly implementation dependent and should be used with
care, especially when attempting to write portable software.
The syntax of a bit-field is:

 <identifier> : <constant_expression>

The <constant_expression> tells us how many bits must be allocated for <identifier>. For example:

 struct my_bit
 {
 int b1 : 24;
 int b2 : 16;
 };

We summarise the implementation dependencies of bit-fields:
· The integral type can be int, signed or unsigned.
· Assignment of fields can be from left to right or from right to left.
· How a plain bit-field is interpreted depends on the underlying hardware.

Using bit-fields does not necessarily imply greater speed or efficiency.

10

Bitfields

l Used for the fields of a structure

lWe can specify the number of bits for each field

l Only possible for int
struct member

{

unsigned int age : 4;

unsigned int golfclub : 1;

unsigned int footbalclub : 1;

};

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

