
Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

1

Pointers and Arrays

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 2

2

Overview

 Pointers
 Pointers as function argument
 Arrays
 Strings

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

3

Pointers
The term pointers makes most C programmers shiver. Pointers are what made C for a lot of people
difficult to learn. It is very useful but can be dangerous as well. Most bugs in C programs are
because of the pointers.

A pointer is as the name suggests a pointer to something. It points to some value. The pointer for
example can point to an integer number or float number or even to another pointer. This is
accomplished by storing the address of what it points to. The pointer is a variable as well but it does
not store a normal value directly but it stores the address of the value thus it is pointing to the value.
The declaration of a pointer has the following generic form:

 <type * var_name;

Some examples:
int* pi; /* Pointer to an integer value */
float* pf; /* Pointer to a float value */
char* s; /* Pointer to a character */

Like normal variables the pointer variable has a value of which
it is initially unknown where it points to. Therefore perhaps the
most important rule when using pointers is that the pointer
needs to be initialised with an address. Initialisation of a pointer
is a bit more difficult than that of a normal variable. It is not
possible to assign just any address to a pointer. The compiler
must calculate an address for us to which the pointer must
point. In a simple example we can first create a piece of
memory containing an int value (by declaring a variable of type
int) and assign the address of this variable to a pointer.

int int_var = 10;
int* pi = &int_var;

/* pi contains the address of int_var, it points to int_var */

3

Pointers

 Pointer is a variable which contains an address
 Declare using type and asterisk

<type>* p_name;

 Get value using dereferencing
int* p;

…

(*p) = 10;

10

1000

1000 (int_var)

4050 (pi)

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 4

The ‘&’ operator calculates the address of the variable int_var and assigns it to the pointer pi. We
let the compiler assign the address of the variable because we do not know the address of the
variable when creating the source code.

Although pi points to the variable int_var there is no connection between both. The pointer does not
know anything of the variable even it is pointing to the same memory address. The pointer has the
same address stored in it as where the variable int_var resides. Therefore when we change the value
of int_var the address content is changed. The pointer still points to the same changed value.

int_var=30; /* Memory contents where int_var is stored is changed to 30 */

We know that pi points to an int value so if we want to change the value where it points to we have
to use its address. The pointer contains the address and by using a technique called dereferencing
we can get the contents of the memory it points to (the same as that of variable int_var).

(*pi)=40; /* Contents of the address pi holds is changed to 40 */

/* The variable int_var is therefor changed as well
because it is stored at the address pi holds */

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int a = 10;
 int b = 20;
 int* p;

 /* Before using the pointer */
 printf("a = %d\n", a); /* Will print a = 10 */
 printf("b = %d\n", b); /* Will print b = 20 */

 p = &a; /* Let p point to the variable a */
 printf("p points to %d",(*p)); /* Will print 10 */
 (*p) = 30;

 p = &b; /* Let p point to the variable b */
 printf("p points to %d",(*p)); /* Will print 20 */
 (*p) = 40;

 /* After using the pointer */
 printf("a = %d\n", a); /* Will print a = 30 */
 printf("b = %d\n", b); /* Will print b = 40 */

 exit(0);
}

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

5

Pointers as function-arguments
Normally functions use call by value for their arguments. This means that all values passed to a
function are copied onto the stack for that function. Inside the functions the variables are copies of
the original supplied to that function. Changing these copies will not affect the originals. The copies
are destroyed when the function ends. See example below.

#include <stdio.h>
#include <stdlib.h>

void print_number(int nr);
void sqr(int nr);

void print_number(int nr)
{
 printf("%d\n", nr);
}

void sqr(int nr)
{
 nr = nr * nr;
}

int main()
{
 int a = 10;

 print_number(a); /* Prints 10 */
 sqr(a);
 print_number(a); /* prints 10 */

 exit(0);
}

The example shows a call to print_number() with variable a as its argument. The contents of a is
copied to the stack and is destroyed after print_number() ends. Changing this value inside the
function print_number() will only affect the copy and not the original. The same holds for the sqr()
function. It changes the copy and not the original therefore the sqr() function calculates the square
but the result is lost.

4

Pointers as Function Arguments

 Normally function arguments are copied on the stack
 If you don’t want a copy use pointers

sqr(int* a);

 Pass argument address upon function call
int var = 10;

sqr(&var);

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 6

Using pointers we can change the function sqr() so that it will change the original value and not the
copy. The argument passed to the function will be the address of the variable. The argument type
therefore has to be changed to a variable which can store an address the pointer.

void sqr(int* nr);

The test program is changed to:

void print_number(int nr);
void sqr(int* nr);

void print_number(int nr)
{
 printf("%d\n", nr);
}

void sqr(int* nr)
{
 (*nr) = (*nr) * (*nr);
}

int main()
{
 int a = 10;

 print_number(a); /* Prints 10 */
 sqr(&a);
 print_number(a); /* prints 100 */

 exit(0);
}

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

7

Arrays
An array is a collection of values of the same type. When we declare an array in C we get a list of
variables which can be referenced using the same name (the array name) with an index value
specifying the variable inside that list. We create such an array by using the index operator [] with
the size of the array.
The general form is:

<type> name [<size>];

The <type> can be replaced by any type possible in C so even pointers can be used. The size
however has to be a constant. It cannot be a variable. Since the size cannot be changed, they are
also called static arrays. Some examples:

int array_int[10]; /* Array of 10 integers */
float array_f[3]; /* Array of 3 float values */

After an array is created we can access its elements by using the index operator [] specifying which
element to access.

array_int[0] = 10;
array_f[2] = 30.0;

The indexing starts with zero (0). The problem however arises when we access elements outside the
boundaries of the array. For example element 100 in the array_int. This will not cause a compiler
error. And depending on the platform, it might not even give a run-time error. The compiler does
not check the indexing value neither does the system during the run-time. The effect of accessing
outside the boundaries of the array results in accessing memory that is part of other variables or
even memory that is not part of our program. Therefor we have to watch out that we do not index
outside the boundaries.

Some rules for arrays.
• Size has to be static.
• Indexing starts with 0.
• Always a contiguous part in the memory.
• We cannot determine the size of an array. Remember the size used when creating array.

5

 An array is a list of values of one kind
 General form

<type> name [<size>];

 Use indexing value to get element of array
int array_int[10]; /* 10 int values */

array_int[0] = 20; /* Set element to 20 */

 Array starts indexing with 0 (zero)

Arrays

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 8

The following example shows some uses of arrays.

/* Program to show the use of one-dimensional arrays. */
/* (C) Datasim BV 1995 */

#include <stdio.h>
#include <stdlib.h>

main()
{

 double my_arr[10];
 int j;

 /* Declare an array of doubles; indexing starts at 0!
 Indexing with arrays in some other languages starts at
 1 (so, be careful) */

 /* Now initialise the array to 0.0 */
 for (j = 0; j < 10; j++) my_arr[j] = 0.0;

 /* Accessing the elements; note that we loop outside the
 valid range without getting a compiler error !!!!
 This will probably result in a run-time error and
 you might will need to REBOOT your system. This is certainly
 the case on DOS machines where there is little protection
 against this type of violation!!!! */
 for (j = 0; j < 15; j++)
 {
 printf("Index: %d , Value: %f\n", j, my_arr[j]);
 }
}

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

9

Initialising Arrays

Using arrays is not the same as using normal variables of type int, char, float or double. Arrays
cannot be assigned. If we want to copy an array to another array we have to loop over all the
elements and copy each element of that array.

void main()
{
 int array_1[3];
 int array_2[3];
 int counter = 0;

 /* Initialise array_1 */
 array_1[0]=10; array_1[1]=20; array_1[2]=30;

 /* Initialise array_2 (copy of array_1) */
 for(counter = 0; counter < 3; counter++)
 {
 array_2[counter] = array_1[counter];
 }
}

Initialising the array at creation is easier. It is possible to specify the values of each element in the
array between {} and separating each value with a comma.

void main()
{
 int array_1[3] = {3, 4, 5};
 int array_2[] = {5, 8, 2, 4};
 int array_3[5] = {2, 7, 8};
}

Normally the size given is the same as the number of elements in the list. If the size is omitted
(array_2) then the size will be determined from the number of elements in the list. If the number of
elements in the list is smaller than the given size (array_3) the remaining elements will be
initialised to zero.

6

 Arrays need to be initialised element by element
 Cannot assign two arrays

array_int1 = array_int2; /* NOT POSSIBLE */

 Can initialise upon creation by specifying each element
int array_int1[4] = {1, 4, 5, 6};

float array_f[] = {10.23, 34.33, 30.0};

Initialising Arrays

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 10

Strings

The language C has no type for representing a string like you have in other programming languages
such as Basic. To use strings we have to declare an array of characters.

char string_1[80]; /* An string of 80 characters */

The disadvantage of using an array for representing strings is that we cannot determine the size of
the string during run-time. This is solved by the C language to state that the last character of a
string should be the ‘\0’ character. The following small example will fill the string and print it on
the screen:

void main()
{
 char string[80];

 string[0] = 'T';
 string[1] = 'e';
 string[2] = 'x';
 string[3] = 't';
 string[4] = '\0'; /* Set end of string */

 printf("The string is : %s", string);
}

If we comply with the standard form of a string that the last character is a ‘\0’ we can use the
library <string.h> which contains a lot of functions for using string such as copying, comparing
etc.

7

Strings

 A string is an array of characters
 Declare using array notation

char string[80];

/* A string of 80 characters */

 Last character of string should be ‘\0’
 Use functions declared in <string.h>

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

11

Using Strings
We cannot use string variables as normal variables. It is not possible to assign two strings to each
other. This is because the strings are actually arrays of characters and arrays cannot be assigned. If
we want to copy two arrays we have to copy each element. Initialising a string can be a tough job if
we initialise character by character (as we can see in the previous example).

As we saw in ‘Initialising Arrays’ we can specify the elements of the array upon creation. When it
is an array of characters we can even initialise it with a constant string.

void main()
{
 char s1[] = {'C', ' ', 'l', 'a', 'n', 'g', 'u', 'a', 'g', 'e', '\0'};
 char s2[] = "C language"; /* Adds the ‘\0’ for us */
 char s3[80];

 s3 = "Hello"; /* NOT POSSIBLE! We have to use strcpy() */

 strcpy(s3, "Hello");
}

8

Using Strings

 Use functions in <string.h>
 Can initialise upon creation

char str[80] = "C the language";

 Use functions in <string.h> e.g.:
strcpy(str, "Some other text.");

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 12

Arrays and Pointers
An array is implemented as one contiguous piece of memory. So if element zero of an integer array
is located at address 1000 than the next element is situated at address 1002. This is always
guaranteed.

The array is implemented as a pointer pointing to the first element in the array.

Therefore we can also use pointers and let them point to the beginning of the array. They often say
that arrays and pointers are the same. We can use the index operators for pointers:

void main()
{
 int array[3];
 int* p;

 p = array; /* p points to the first element of the array */
 (*p) = 10; /* First element is 10 */
 p[0] = 10; /* First element is 10 */
}

If we use the technique of indexing with pointers we have to be sure that the pointer points to an
array and not to a single value. Otherwise we are accessing memory which is not assigned to us.

9

Arrays and Pointers

 Array name is the address of the first element of the array
int array[3];

/* array is address of first element

array == &array[0]*/

 Pointer also contains address of some element
 Can assign pointers to arrays
 Can use array indexing with pointers

int array[3];

array

0 1 2

Pointers and Arrays

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

13

Pointer Arithmetic
It is possible with pointer variables to add a value to it. This results in adding the size of the
element type to the pointer. So if it is a pointer to an int value, adding one will result in the addition
of one int size (two bytes in DOS, four bytes in 32 bit Windows). If the pointers points to a float
value this results in adding four bytes (the size of a float).

void main()
{
 int array[3];
 float farray[3];
 int* pi;
 float* pf;

 pi = array;
 pf = farray;

 (*pi+1) = 10; /* Same as pi[1] */
 (*pf+1) = 20.0; /* Same as pf[1] */
}

When using this technique we have to be sure that the pointer points to a memory block that is large
enough. It is easy to add 5 to the pointer pi but then we access a piece of memory which is not
assigned to our program. This can result in memory problems. In the previous example the pointer
points to an array that is large enough so no problems here.

10

Pointer Arithmetic

 It is possible to add a value to the pointer
int* pi;

pi = array;

pi[1] = 10;

(*(pi+1)) = 10;

 Adding to a pointer means adding the array type’s size to the address
pi+1; /* Add one int size to the address stored in pi (

next element) */

http://www.quantnet.com/forums/threads/faq-c-for-financial-engineering-online-course.7376/

Pointers and Arrays 14

Multidimensional Arrays
We can create multidimensional arrays using multiple [] pairs.

/* Program to show the use of multi-dimensional arrays.
 (C) Datasim BV 1992 */

#include <stdio.h>
#include <stdlib.h>

void main()
{
 double my_arr[10][5]; /* The two dimensional array */
 int i, j; /* Two counters */

 /* Declare a 2d array of doubles; indexing starts at 0!
 Indexing with arrays in some other languages starts at
 1 (so, be careful)
 This array can be visualised as an array of arrays. */

 /* Now initialise the array */
 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 5; j++) my_arr[i][j] = (double) (i * j);
 }

 // Access the elements
 for (i = 0; i < 10; i++)
 {
 printf("\nRow: %d : ", i);
 for (j = 0; j < 5; j++)
 {
 printf("%f ", my_arr[i][j]);
 }
 }
}

11

Multidimensional Arrays

 Can create multidimensional arrays using multiple [] pairs
int marray[2][3];

 Is an array of arrays
 The pointer equivalent is a double pointer (pointer to a pointer)

int** pmarr;

